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Figure 1. An architecture diagram demonstrating the flow of components in the testing platform. A behavior
prediction model, library of SCENIC test scenarios, and multi-objective evaluation metric serve as inputs to
VERIFAI, which monitors and searches for failure cases.

Abstract

Behavior prediction remains one of the most challenging tasks in the autonomous
vehicle (AV) software stack. Forecasting the future trajectories of nearby agents
plays a critical role in ensuring road safety, as it equips AVs with the necessary
information to plan safe routes of travel. However, these prediction models are
data-driven and trained on data collected in real life that may not represent the full
range of scenarios an AV can encounter. Hence, it is important that these predic-
tion models are extensively tested in various test scenarios involving interactive
behaviors prior to deployment. To support this need, we present a simulation-based
testing platform that supports (1) intuitive scenario modeling with a probabilistic
programming language called SCENIC, (2) specifying a multi-objective evaluation
metric with a partial priority ordering, (3) falsification of the provided metric, and
(4) parallelization of simulations for scalable testing. As a part of the platform, we
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provide a library of 25 SCENIC programs that model challenging test scenarios
involving interactive traffic participant behaviors. We demonstrate the effectiveness
and the scalability of our platform by testing a trained behavior prediction model
and searching for failure scenarios.

1 Introduction

Behavior (or trajectory) prediction, which is a component of an autopilot, plays a critical role in
ensuring road safety, as an autonomous vehicle (AV) that can accurately forecast the motions of
surrounding vehicles is better equipped to plan safe routes of travel. This prediction task is challenging
and is currently an active field of study. The difficulty of this task stems from the multifaceted nature
of dynamic traffic scenarios: an effective model must appropriately account for both the AV’s
surrounding environment and the social interactions between various agents over a duration of time.

Models for such tasks are commonly based on neural network (NN) architectures, such as Recurrent
Neural Networks (RNNs) [13] and Long Short-Term Memory (LSTM) networks [12, 16]. These are
data-driven models trained on data collected on roads. Capturing data related to all possible scenarios
on roads is difficult, let alone characterizing all possible scenarios itself. There are edge-case (i.e.
rare) scenarios that, by definition, are rarely encountered on roads and, consequently, are only sparsely
reflected in the training data, if at all. Hence, testing behavior prediction models in, at least, known
edge case scenarios is crucial. Tending to this issue in the real world would involve reconstructing
such scenarios in a controlled testing facility, which can be expensive and labor-intensive, resulting
in a lack of scalability of testing. On the contrary, simulation offers an inexpensive mechanism for
reconstructing scenarios of interest, making for a more scalable approach. Yet, simulation-based
testing of behavior prediction models requires support for (1) modeling interactive scenarios of
interest in simulation, (2) generating necessary input synthetic sensor data from those simulations,
and (3) evaluating behavior prediction models using multi-objective evaluation metrics. We aim to
address this need in this paper.

Contributions We provide a platform to test behavior prediction models that is efficient, scalable,
and scenario-based. The main contributions of this work include the following:

• An open-source platform1 for researchers and developers to evaluate behavior prediction
models in the CARLA simulator [4] under scenarios modeled in the SCENIC language [9, 10].
The platform allows users to specify custom multi-objective evaluation metrics and falsify
their models with respect to these metrics, parallelizing simulations for scalable testing;

• An open-source library of 25 SCENIC programs to evaluate behavior prediction models in
various dynamic scenarios;2

• An experimental evaluation of a behavior prediction model against five traffic scenarios to
demonstrate the efficacy and scalability of our platform.

2 Background

2.1 SCENIC: Scenario Modeling Language

SCENIC [9, 10] is a probabilistic programming language whose syntax and semantics are designed to
intuitively model and generate scenarios involving interactive agents. A SCENIC program represents
an abstract scenario which defines distributions over the initial states and dynamic behaviors of agents
in the scenario. Sampling from these distributions yields a concrete scenario that assigns specific
values to these parameters. The SCENIC tool can generate concrete scenarios from a SCENIC program
and execute them in a simulator to generate data and test a system. SCENIC is simulator-agnostic and
has interfaces to a variety of simulators for driving, aviation, robotics, and other domains [10].

1https://github.com/BehaviorPredictionTestingPlatform/TestingPipeline
2https://github.com/BehaviorPredictionTestingPlatform/ScenarioLibrary
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Scenario # minADE minFDE MR CR SD
1 0.037 0.15 0.017 0.034 0.58
2 0.044 0.19 0.016 0.025 0.54
3 0.081 0.39 0.034 0.24 0.45
4 0.13 0.74 0.31 0.36 0.52
5 0.19 1.1 0.49 0.51 0.56

Table 1. Results of evaluating the LaneGCN model against five SCENIC programs. The minADE, minFDE, and
MR metrics indicate the model’s error of predictions with respect to ground-truth trajectories. The CR and SD
metrics reflect the ability of the VERIFAI sampler to identify a diverse number of counterexample scenarios.

2.2 VERIFAI: Formal Analysis Software Toolkit

VERIFAI [5, 20] is a toolkit for formal design and analysis of AI/ML-based systems. Its architecture
is shown in Figure 1. It takes three inputs: (1) the system of interest (e.g. behavior prediction model),
(2) an environment model (e.g. SCENIC program), and (3) a multi-objective evaluation metric.

VERIFAI performs falsification by sampling concrete scenarios using a variety of techniques, simu-
lating each one and monitoring the system’s performance with respect to the given evaluation metric.
The sampled test parameters and corresponding system performance are logged for further analysis,
and also provided to the sampling algorithms to more intelligently select the next scenario. To
support multi-objective evaluation metrics, VERIFAI provides a multi-armed bandit sampler, which
formulates the search process as a multi-armed bandit problem with a reward function favoring
concrete scenarios that pessimize multiple metrics (taking priority into account) [20].

3 Overview

The overall architecture of our platform is visualized in Figure 1. The user needs to provide three
inputs: (1) a trained behavior prediction model, (2) a multi-objective evaluation metric, and (3) a
library of SCENIC programs modeling a set of abstract scenarios (refer to Section 2.1).

The evaluation pipeline for behavior prediction is shown in Figure 2 in the Appendix. As stated
in Section 2.1, a SCENIC program in conjunction with the CARLA simulator is used to generate
various concrete scenarios. We implement support for collecting various types of data from each
simulation to enable testing different behavior prediction models, which can take various types of
inputs. Users can collect trajectories (i.e. timestamped position and headings of all traffic participants
in the scenario) and a stream of sensor data from RGB camera(s), depth camera(s), and/or LiDAR
sensor(s). We can also collect corresponding ground-truth labels such as segmentation labels for
RGB images and LiDAR, as well as 3D bounding boxes.

From these collected data, we extract two different types of data: (1) historical data, which is the
segment of the data which is input to the behavior prediction model, and (2) ground-truth future
trajectory data, which is used to evaluate the model’s predicted trajectories using the provided multi-
objective evaluation metric, which outputs ρ⃗, a tuple containing a score for each metric specified.
VERIFAI’s multi-armed bandit sampler is used to falsify the given multi-objective evaluation metric.
Please refer to Section 2.2 for more detail on the sampler.

4 Experimental Evaluation

We used our platform to evaluate the LaneGCN model [15]; for details of our setup, see Appendix D.1.

In Table 1, we enumerate the results from our testing platform after evaluating LaneGCN against
the five scenarios in Appendix D.2. The first three metrics (minADE, minFDE, MR) quantify the
behavior prediction model’s performance, averaged over all samples generated by VERIFAI, whereas
the latter two metrics, counterexample rate (CR) and scenario diversity (SD), provide insight about
the effectiveness of different sampling methods. The CR expresses the number of counterexamples
found in VERIFAI with respect to the total number of samples run. The SD relates the observed
variance to the defined range of values for a set of feature distributions. For further details on these
metrics, refer to Appendix B.
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While SD remained relatively stable around 0.53±0.08, we observed some variance in the other
metrics. LaneGCN made noticeably more accurate predictions for Scenarios 1, 2, and 3 than for
Scenarios 4 and 5, reflected by their substantially lower minADE, minFDE, and MR values. We
speculate this may be attributed to the differences in complexity of the vehicle’s behavior in each of
these scenarios. In Scenarios 1, 2, and 3, the oncoming vehicles had a relatively straight trajectory,
either continuing a straight path or making a single lane change. Meanwhile, in Scenarios 4 and 5,
the oncoming vehicles makes an unprotected left turn across an intersection. Scenario 5 is even
more complex than Scenario 4, with the ego vehicle making a right turn at the intersection instead of
continuing straight. Recall that LaneGCN takes historical trajectories for all traffic agents as input,
hence why the ego vehicle’s own behavior could influence the accuracy of its predictions. Overall,
these results suggest that our scenario-based testing platform is effective for evaluating behavior
prediction model performance and identifying difficult driving scenarios for the model.

To demonstrate the efficiency of our approach, we benchmarked the runtime of the testing platform
for both sequential and parallel executions. We conducted these experiments by evaluating LaneGCN
against Scenario 1 for N iterations, where N ∈ {25, 50, 75, 100}. We ran the pipeline sequentially,
during which there was no overlap between sampling and simulation, and then we ran the pipeline in
parallel, first with 2 workers, then with 5 workers.

The results are plotted in Figure 4 in the Appendix. On average, parallel execution yielded a 1.51x
speedup with 2 workers and a 3.09x speedup with 5 workers. There are a number of reasons the
speedup did not quite achieve a factor consistent with the number of parallel workers. One definite
cause is that VERIFAI only parallelizes simulation and evaluation [20]. Thus, while simulation of
the concrete scenarios can occur simultaneously on several instances of the CARLA simulator, the
sampling process remains sequential.

5 Related Work

Although there have been increasing efforts to develop behavior prediction models for AVs, there
has been little work on formally testing them in simulation. Some work has evaluated AV planners
using simulated perception and prediction inputs [21] from a set of scenarios, but the focus was to
demonstrate applying different noise models to improve the realism of simulated data. Our efforts
are directed towards creating an efficient and scalable testing platform that provides customizable
metrics and data generation capabilities, with the capacity for users to model their own scenarios.

VERIFAI has been used in a number of other case studies on AI systems [5], including: identifying
relevant tests for AV track testing [11]; falsifying, debugging, and retraining an autonomous aircraft
taxiing system [8]; and evaluating a full autopilot stack in the IEEE AV Test Challenge [19]. Our
work is the first to use VERIFAI for testing behavior prediction models.

6 Conclusion

In this paper, we presented a platform for testing behavior prediction models with SCENIC and
VERIFAI. As part of the platform, we provided a library of interactive scenarios encoded as SCENIC
programs. We demonstrated our platform by evaluating the LaneGCN model against well-known
motion forecasting metrics. Lastly, we showcased the scalability of running the pipeline in a
parallelized fashion with a runtime benchmark comparison to a sequential execution.
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A Description of the Library of SCENIC Programs

As a part of our behavior prediction evaluation platform, we provide a library of 25 SCENIC programs
as test scenario models. We referred to the INTERACTION dataset [22], the Argoverse Motion
Forecasting dataset [2], and a publication by the National Highway Traffic Safety Administration
(NHTSA) of pre-crash scenarios based on 2011-2015 crash data recorded by the U.S. Department
of Transportation [18] and encoded scenarios as SCENIC programs. These datasets were chosen
based on our efforts to capture a diverse selection of interactive scenarios with critical trajectories
(e.g., near-collision situations). These scenarios covered a wide variety of road structures—such as
highways, intersections, and roundabouts—as well as agent interactions—such as bypassing, merging,
and unprotected left turns.

B Metrics

B.1 Multi-Objective Evaluation Metrics

In VERIFAI, a multi-objective function defines a set of metrics used to determine the efficacy of the
system being evaluated. As stated in Section 3, the output of the function is ρ⃗, a tuple containing a
score for each metric specified, the calculation of which is defined in the function. By convention, a
negative score for any element in ρ⃗ indicates a failure, in which case the counterexample is stored in
the error table for offline analysis; accordingly, a non-negative score for all elements in ρ⃗ indicates
the model succeeded in meeting the evaluation criteria.

For the purpose of testing behavior prediction models, we apply three commonly-used motion fore-
casting metrics. Average Displacement Error (ADE) is the Euclidean distance between the predicted
trajectories, (x̂t, ŷt), and the ground-truth trajectories, (xt, yt), averaged over all n timesteps:

ADE(x, y) =
1

n

n∑
t=1

√
(xt − x̂t)2 + (yt − ŷt)2 (1)

Final Displacement Error (FDE) is the Euclidean distance between the predicted trajectory, (x̂n, ŷn),
and the ground-truth trajectory, (xn, yn), at the last timestep:

FDE(x, y) =
√

(xn − x̂n)2 + (yn − ŷn)2 (2)

For the ith sample in a dataset, we take the minimum ADE (minADE) and minimum FDE (minFDE)
across the k most probable predictions, P i

k, generated by the model, as done in similar approaches
accommodating multi-modal trajectories [3, 14, 15, 16]. Doing so avoids penalizing the model for
producing plausible predictions that don’t align with the ground truth.

minADE(P i
k) = min(x,y)∈P i

k
ADE(x, y) (3)

minFDE(P i
k) = min(x,y)∈P i

k
FDE(x, y) (4)

The third metric, Miss Rate (MR), is the ratio of missed predictions over the entire test set of N data
points, Pk. In this context, a missed prediction occurs when all k proposed trajectories in prediction
P i
k differ in final position from the ground truth by more than some distance d threshold. This metric

indicates the trade-off between accuracy and diversity [17].

MR(Pk, d) =
1

N

N∑
i=1

1{minFDE(P i
k) > d} (5)

In our platform, we enabled a command-line argument for the user to specify the threshold values
for minADE, minFDE, and MR. Recall that ρ⃗ is a tuple of scores, and if any score in ρ⃗ is negative,
then the scenario is deemed a failing counterexample. To conform to this convention, we store the
difference between the thresholds and their corresponding metrics as the scores in ρ⃗ (e.g., we store
(2−minADE) to enforce a minADE threshold of 2).
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B.2 Platform Metrics

In section B.1, we discussed the metrics that would be used to evaluate the behavior prediction
model (Eq. 3, 4, 5). Now, we describe two metrics for evaluating the effectiveness of our testing
platform: Counterexample Rate (CR) and Scenario Diversity (SD). The CR expresses the number
of counterexamples found in VERIFAI with respect to the total number of samples run. Thus, the
CR reflects the ability of the multi-armed bandit sampler to search the feature space and identify
failing scenarios in which the behavior prediction model’s predictions did not meet the criteria of the
multi-objective function:

CR =
Number of counterexamples

Number of all examples
(6)

We can also formalize the overall SD produced by SCENIC, which relates the observed variance to
the defined range of values for a set of feature distributions. For the ith feature, fi, let σ(fi) denote
the standard deviation of values observed and L(fi) denote the interval length, where the interval
length is the size of the range of values specified in the feature’s distribution. The SD for a set of N
features is as follows:

SD =
2 ·

∑N
i=1 σ(fi)∑N

i=1 L(fi)
(7)

C LaneGCN Behavior Prediction Model

We evaluate LaneGCN behavior prediction model by Uber ATG [15]. This behavior prediction
model ranked 1st in a motion forecasting competition [1] held by Argo AI, based on the Argoverse
dataset [2]. Furthermore, it was one of few working open-sourced behavior prediction models. We
evaluate the pre-trained LaneGCN model, which was trained on over 300,000 real-life scenarios
collected for the aforementioned Argoverse dataset.

To test the model in CARLA, we implemented a support to make it operational with the OpenDRIVE
format [6, 7]. We applied the necessary computations to bridge the gap between map representations
in SCENIC and the model. Due to the modular nature of the model’s architecture, this functional
exchange could be completed with minimal effect to any dependencies.

The model expects a CSV file containing 20 timesteps of historical trajectories for all traffic agents
as input. It produces 6 predictions, each containing 15 timesteps of predicted trajectories, for a
designated single traffic agent. All trajectories use a sample rate of 10 Hz.

D Experimental Details

D.1 Experimental Settings

For these experiments, we utilized the multi-armed bandit sampler in VERIFAI for searching the
feature space. As demonstrated in a recent case study [20], the multi-armed bandit sampler strikes
a strong balance between falsification capabilities (i.e., the number of counterexamples found) and
feature space diversity (i.e., the concrete values sampled for each feature). Please refer to Section 2
for more detail.

For each scenario, we sample and generate 120 concrete scenarios, divided into 4 batches. The
difference between batches was the initial point in time we wished to start the prediction, referred
to as the parameter timepoint. For example, setting timepoint=40 indicates historical trajectories
encompass timesteps in the range [20, 40) and predicted trajectories encompass timesteps in the range
[40, 55). Note that since historical trajectories include 20 timesteps, there is a minimum constraint of
timepoint=20. This parameter allows users to test a model on different parts of a scenario, which
may involve greater or lesser complexity of agent-to-agent interactions. Thus, we generated 30
samples (i.e., a batch) for each of timepoint∈{20,40,60,80} to evaluate the behavior prediction
model’s capability to predict in different segments of a scenario. We set the minADE threshold to 0.1
meters, the minFDE threshold to 1.0 meter, and the MR distance threshold to 1.0 meter.
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These experiments were conducted on a machine running Ubuntu 18.04.5, equipped with an Intel
Core i9-9900X @ 3.50GHz central processing unit (CPU), as well as an Nvidia GEForce GTX and
two Nvidia Titan RTX graphics processing units (GPUs).

D.2 Scenario Descriptions

We illustrate use of our testing platform by evaluating the LaneGCN model against five scenarios of
varying complexity from our library of SCENIC programs, described as the following:

1. The ego vehicle waits at a 3-way intersection for another vehicle from the lateral lane to
pass before making a right turn.

2. The ego vehicle makes a left turn at a 3-way intersection and must maneuver to avoid
collision when another vehicle from the lateral lane continues straight.

3. A trailing vehicle performs a lane change to bypass the leading ego vehicle before returning
to its original lane.

4. The ego vehicle drives straight through a 4-way intersection and must suddenly stop to avoid
collision when another vehicle from the oncoming lane makes an unprotected left turn.

5. The ego vehicle makes a right turn at a 4-way intersection while another vehicle from the
oncoming lane makes an unprotected left turn, such that both vehicles are turning to the
same outgoing leg of an intersection.

Here, ego vehicle refers to the reference point for the behavior prediction (i.e., the vehicle in the
scenario that would be administering the behavior prediction model). The SCENIC source code of
these scenarios is included in the appendix as Figures 5-9.

Figure 2. An overview of the testing pipeline in VERIFAI. Historical data is extracted and serves as input to the
behavior prediction model. The predicted and ground-truth trajectories are compared against the multi-objective
evaluation metric to derive a tuple of scores, referred to as ρ⃗.
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Figure 3. An example SCENIC program in which a badly parked car cuts into the ego vehicle’s lane.
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Figure 5. SCENIC program used in Scenario 1
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Figure 6. SCENIC program used in Scenario 2
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Figure 7. SCENIC program used in Scenario 3
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Figure 8. SCENIC program used in Scenario 4
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Figure 9. SCENIC program used in Scenario 5
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